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We show that the monopolar hydrogen atom is connected to a four-dimensional
harmonic oscillator with a monopole-dependent constraint by the
Kustaanheimo–Stiefel transformation.

1. INTRODUCTION AND THE EXTENDED HYDROGEN ATOM

The simplest atom, hydrogen, serves as a prototype for descriptions of
more complicated many-electron atoms. It is given in textbooks as one of
the few solvable problems in both classical and quantum physics. Almost all
treatises on quantum mechanics and atomic physics treat selected aspects of
the hydrogen atom. Yet despite this voluminous literature, research continues
to reveal novel aspects of this elementary system. An example is the connec-
tion between the three-dimensional hydrogen atom and the four-dimensional
isotropic harmonic oscillator by the Kustaanheimo–Stiefel (KS) transforma-
tion, which has been a subject of considerable interest in the last three decades
[1–14]. Recently, we found an extended U(1) monopole-dependent hydrogen
atom [15] (it is a little different from the McIntosh–Cisneros–Zwanziger
system, a charged spinless particle in a combined monopole plus scalar
potential field [16,17]), whose Schrödinger equation reads
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where m is the reduced mass of the hydrogen atom, k 5 e2,
›

p 5 p 2 eA,
A is the vector potential defined in two different regions Ra (0 # u # p/2
1 d) and Rb (p/2 2 d # u # p) as [18]
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and q 5 eg 5 1/2 3 integer is the Dirac U(1) magnetic monopole [19].
Parallel to the usual hydrogen atom, in the extended physical system there
exist two conserved vectors
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which are the extended monopole-dependent angular momentum vector and
the extended Laplace–Runge–Lenz–Pauli (LRLP) vector, respectively.
Due to

›
p 3

›
p 5 e ¹ 3 A 5 q

r
r 3 or (4)

[pa, pb] 5 ieabgq
xg

r 3 (a, b, g 5 1, 2, 3)

one can easily verify that L 5 (L1, L2, L3) and B 5 !(2mk2/2E ) R 5 (B1,
B2, B3) span the SO(4) dynamic symmetry group, and the two corresponding
extended monopole-dependent Pauli relations [20] are

L ? B 5 B ? L 5 q!2
mk2

2E
, L2 1 B2 1 1 5 q2 2

mk2

2E
(5)

The wave function c should not be thought of as an ordinary function,
but a “section” [18]. In the x1x2x3 space, in the basis .H, L2, L3., cq,n,l,m(r)
5 Rq,n,l (r)Yq,l,m(u,f), where

Rq,n,l(r) 5 Cn,lr le2=22mEnr
1F1(l 1 1 2 n; 2l 1 2; 2!22mEnr) (6)

is the radial wave function. Yq,l,m(u, f) 5 Qq,l,m(u)Fq,m(f) is the monopole
harmonic, with
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L3Fq,m(f) 5 mFq,m(f), [Fq,m(f)]a 5 ei(m1q)f, (7)

[Fq,m(f)]b 5 ei(m2q)f

where [Fq,m(f)]a corresponds to region Ra , and ca 5 e2iqfcb. The eigenenergy
En 5 2(mk2/2)(1/n2), and n 5 .q. 1 1, .q. 1 2, . . . . Obviously, when q 5
0, all of the equations described above will reduce to the usual ones. In fact,
the monopolar hydrogen atom contains all the analogous properties of the
usual system. To our knowledge, connecting such an extended hydrogen atom
to a 4D harmonic oscillator by the KS transformation has not been discussed
in the literature. The purpose of this paper is to establish such a connection.

2. HYDROGEN OSCILLATOR CONNECTION BY THE KS
TRANSFORMATION

To connect the monopolar R3 hydrogen atom [see Eq. (1)] to the R4

harmonic oscillator [see Eq. (21)], we first discuss the problem in the region
Ra. The so-called KS transformation is

x1 5 2(u1 u3 2 u2 u4),

x2 5 2(u1 u4 1 u2 u3), (8)

x3 5 u2
1 1 u2

2 2 u2
3 2 u2

4

where xi (i 5 1, 2, 3) and ua (a 5 1, 2, 3, 4) are the Cartesian coordinates
of R3 and R4, respectively. Under the transformation r 5 (x2

1 1 x2
2 1

x2
3)1/2 5 u2, xi and ua are usually realized by

x1 5 r sin u cos f, x2 5 r sin u sin f, x3 5 r cos u (9)

and

u1 5 !r cos
u
2

cos v1, u2 5 !r cos
u
2

sin v1

u3 5 !r sin
u
2

cos v2, u4 5 !r sin
u
2

sin v2 (10)

with f 5 v1 1 v2. However, since the KS transformation is (u1, u2, u3, u4

→ x1, x2, x3), the degree of freedom in R4 is greater than that in R3 by one,
and when we evaluate ­/­ua (a 5 1, 2, 3, 4), it is necessary to consider the
fourth variable (denoted by T ). Now, ­/­T will be related to a U(1) magnetic
monopole. As will be seen, without the monopole, ­c/­T 5 0 is just the
constraint condition for the usual problem, and in that case we need not
consider the fourth variable T. Taking the fourth variable T into account,
we obtain
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which can be recast as

­
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5 2i(u3p1 1 u4p2 1 u1p3 1 u2 S)
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where pi 5 pi 2 eAi (i 5 1, 2, 3), we have set " 5 c 5 1, and
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The inversion of Eqs. (12) is
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Equations (14) yield

[rS, pi] 5 [rS, xi] 5 0, [pi , pj] 5 ieijk
xk

r 2 S (i, j, k, 5 1, 2, 3)

(15)

After comparing Eqs. (15) and (4), one obtains

S 5 q/r (16)

Note that Eq. (16), as well as similar relations in this paper, are to be
understood as acting on the wave function c of the system concerned. For
q 5 0, Eq. (15) reduces to the usual result, and the KS transformation connects
the usual R3 hydrogen atom to an R4 harmonic oscillator with the constraint
Sc 5 0.

From Eqs. (14) we get

›
p 2 5 2
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substituting this into Eq. (1) gives for the Schrödinger equation
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Multiplying this by r, using r 5 u2, and taking the constraint condition (rS 5
q)c into account, leads to

F2
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8m o
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This may be cast into the form of a Schrödinger equation for a four-dimen-
sional harmonic oscillator after first stipulating that E , 0 (for bound motions)
and making the definitions m 5 4m, V 5 (2E/2m)1/2, and e 5 k. We obtain
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or *0c 5 ec, with
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*0 and e are the pseudo-Hamiltonian of a four-dimensional harmonic oscilla-
tor and the pseudo-energy eigenvalue, respectively. Consequently, the R3

monopolar hydrogen atom system is connected to the R4 harmonic oscillator
with a monopole-dependent constraint (16) by the KS transformation.

To see the consistency of the constraint condition, we return to Eqs.
(13). In the x1x2x3 coordinates, Aa is expressed as
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(22)

Substituting Eqs. (10), (16), and (22) into Eq. (13), one obtains
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where Ta means discussing T in the region Ra. If we set v1 5 b, v2 5 f 2
b, in other words,

b 5 arctan
u2

u1
, f 5 arctan

u2

u1
1 arctan
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(24)

the solution is

Ta 5 b, 1 i
2

­

­Ta
5 q2c (25)

In region Ra , the KS transformation is understood as (r, u, f, b → r, u, f);
since Ta is b, it is reasonable and acceptable to consider the fourth variable
in Eq. (11).

After substituting Eqs. (8) and (14) into the first of Eqs. (3), we obtain

L3 5 2i
­

­f
2 q 1 sin21u

22F2i
­

­b
1 2qG (26)

whose eigenfunction is
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Fq,m(f, b) 5 ei(m1q)f e2i2qb (27)

Obviously, Fq,m(f, b) differs from [Fq,m(f)]a merely by a phase factor e2i2qb,
and L3 becomes (L3)a 5 2i ­/­f 2 q when it is acted on by Fq,m(f, b).
Since [(i/2) ­/­b 5 rS 5 q]Fq,m(f, b), the constraint condition (16) is
well understood.

A similar discussion can be given for region Rb. The corresponding
equations and solutions are (by setting v1 5 f 2 g, v2 5 g)
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and

Tb 5 g 5 arctan
u4
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2
­

­Tb
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In this case, the constraint is understood as [2(i/2) ­/­g 5 rS 5 q]Fq,m(f,
g), where Fq,m(f, g) 5 ei(m2q)f ei2qg.

In conclusion, the KS transformation is shown to connect a U(1) monopo-
lar hydrogen atom to a four-dimensional isotropic harmonic oscillator with
a reasonable monopole-dependent constraint. The constraint S 5 q/r is well
understood when it acts on the wave function c, and it is related to L ? R 5
q. For the case without the monopole, i.e., q 5 0, the constraint implies that
the usual angular momentum vector and the usual PRL vector are orthogonal
to each other, which is just the case in the usual Coulomb problem.
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